Causality 썸네일형 리스트형 1. LLM은 인과 관계를 이해하고 추론할 수 있을까? Large Laguage Model(LLM)은 방대한 텍스트 데이터를 바탕으로 학습해 언어 이해와 생성에서 좋은 능력을 발휘한다.이러한 LLM의 Model Understading에 대한 최신 연구에 따르면, 인과적 질문(Causal Question)에 높은 정확도로 답변을 제시하는 경우가 존재한다. 하지만 LLM이 실제로 인과 관계를 이해하고 추론(causal reasoning)을 수행하는지에 대한 논의는 여전히 진행 중이다. 인과적 질문 예시: "A가 B의 원인이고, B가 C의 원인일 때, A가 C의 원인이 될까?" 1. GPT의 학습 방식 GPT의 학습 방식은 기본적으로 "다음에 올 단어는 무엇일까?"라는 질문에 답할 수 있도록 학습한 Auto-regressive with teacher forcing.. 더보기 이전 1 다음